ПATIBIA UTIVERSITY

OF SCIEПCE AПD TECHПOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: ALL PROGRAMMES	
QUALIFICATION CODE:	LEVEL: 4
COURSE CODE: BSC41OS	COURSE NAME: BASIC SCIENCE
SESSION: NOVEMBER 2022	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER (FULLTIME)	
EXAMINER(S)	DR. VAINO INDONGO, MR. PERTUS PAULUS AND MR. TUWILIKA TOBIAS
MODERATOR:	DR. EDOSA OMOREGIE

INSTRUCTIONS	
1.	Write all your answers in the answer booklet provided.
2.	Read the whole question before answering.
3.	Begin each question on a new page.
4.	A Periodic Table is attached at the back of this paper.

PERMISSIBLE MATERIALS
Non-programmable Scientific Calculator

QUESTION 1:

Question type: Multiple choices. Read the questions carefully, choose and write the correct letter corresponding to the correct answer. Each question weighs 2 marks.
1.1 Which statement is not true about viruses?
A. They can reproduce independently without a host.
B. They are not included in the six kingdoms of living organism.
C. They cannot strictly be considers as living organism.
D. Each contain either DNA or DNA.
1.2 What is a characteristic of living things that sets them apart from the non-living?
A. They respond to a stimulus.
B. They grow and reproduce.
C. Adaptation to a way of life.
D. All of the above are characteristics of living things.
1.3 The main function of rennet in the manufacture of hard cheese is to \qquad .
A. make the milk taste better
B. lower the pH of milk and kill the other lactic acid bacteria
C. lower the pH of milk and form of curds
D. enhance removal of whey so that the cheese can be made more efficiently
1.4 An obligatory association between two different species that is beneficial to both populations of organisms is \qquad .
A. symbiotic.
B. parasitic.
C. predatory.
D. mutualistic.
A. have no double bonds in their fatty acid chains.
B. are more common in plants than in animals.
C. are associated with lesser health risks than are unsaturated fats.
D. are usually liquid at room temperature.
1.6 During intraspecific competition is between;
A. different species.
B. abiotic organisms.
C. populations.
D. the same organisms.
1.7 How does water act in most solutions?
A. It is a universal solute, dissolving mostly ionic or polar covalent substances.
B. It is a universal solvent, dissolving mostly ionic or polar covalent substances.
C. It is a universal solute, dissolving mostly non-polar covalent substances.
D. It is a universal solvent, dissolving mostly non-polar substances.
1.8 All of the following are true about fermentation except;
A. It improves the sensory characteristics of food.
B. It is undesirable process in the food industry as it spoils the food.
C. It extends the shelf life of food.
D. It changes the nutritional value of food for example converting milk into cheese.
1.9 A food web is \qquad .
A. the same as a food chain
B. linear, involving one organism at a trophic level
C. the grouping of heterotrophs without producers
D. the interconnection of food chains involving more than one organism at a trophic level
1.10 A garden pea plant forms flowers that undergo self or cross pollination to produce seeds. These seeds mature in two to three weeks. Which characteristics of living things are being described here?
A. Cellular organization and use of energy
B. Reproduction and response to environment
C. Growth and reproduction
D. Use of energy and development

QUESTION 2:

Question type: Structured questions.
2.1 Discuss the importance of the following characteristics of living organisms.
i) Growth
ii) Reproduction
2.2 State any two types of shapes used in classifying prokaryotes such as bacteria
2.2 The cow medication, diclofenac, was banned in India because it poisoned and killed as many as 90 percent of that country's vultures. Figure 1 below shows, a whiterumped vulture (Gyps bengalensis), which is an Indian vulture, feeding on a cow carcass. Discuss the critical roles that scavengers play to the stability of the ecosystem, food web and environment at large?

Figure 1
2.4 For the production of cheese, the optimal temperature for the microorganisms involved is about $30^{\circ} \mathrm{C}$. However, after the addition of the starter culture, the temperature was mistakenly set at $300^{\circ} \mathrm{C}$ for the incubation. Explain the effects of that mistake?

SECTION B: CHEMISTRY

QUESTION 3:

Question type: Multiple choices. Read the questions carefully, choose and write the correct letter corresponding to the correct answer. Each question weighs 2 marks.
3.1 How many significant figures are in 700.400 m ?
A. 3
B. 4
C. 5
D. 6
3.2 The factor 10^{9} corresponds to which prefix?
A. Giga
B. Micro
C. Milli
D. Nano
3.3 What is the SI unit for mass?
A. Newton
B. Kilogram
C. Milligram
D. Hectogram

3.4 Convert 150000 Picometers to meters

A. 1.5×10^{-7} meters
B. 1.5×10^{17} meters
C. 0.15 meters
D. 150 meters
A. 335.4 K
B. 16.8 K
C. 289.9 K
D. 94.2 K
3.6 What is the mass number of Boron?
A. 26.9815
B. 10.81
C. 12.011
D. 14.0067
3.7 What is common to elements in the same group?
A. Similar boiling point
B. Similar freezing point
C. Similar number of shells
D. Similar number of valence electron
3.8 Which metal is liquid at room temperature?
A. Mercury
B. Magnesium
C. Copper
D. Lead
3.9 Which of the following elements is unreactive?
A. Neon
B. Carbon
C. Zinc
D. Potassium
A. Na
B. Mg
C. Si
D. Ar

QUESTION 4:

Question type: Structured questions.
4.1 Differentiate between Physical and chemical properties of matter and give an example for each.
4.2 Explain the behavioral changes of the 3 states of matter under high temperature.
4.3 With an aid of a diagram (Fig. 2), illustrate the electron configuration of Sodium, and indicate its number of electrons and mass number.

Figure 2

4.4 State any 2 features of alkaline earth metals.

SECTION C: PHYSICIS

QUESTION 5:

Question type: Multiple choices. Read the questions carefully, choose and write the correct letter corresponding to the correct answer. Each question weighs $\mathbf{2}$ marks.
5.1 \qquad holds constituents of the nucleus together.
A. Gravity
B. Electromagnetic force
C. Strong nuclear force
D. Weak nuclear force
5.2 A unit of force called Newton is equivalent to \qquad .
A. $\mathrm{g} . \mathrm{m} / \mathrm{s}^{2}$
B. $\mathrm{kg} \cdot \mathrm{ms}^{-1}$
C. c. ms^{-2}
D. kg.ms ${ }^{-2}$
5.3 The force of an object due to gravitational acceleration acting on it is known as \qquad . (2)
A. mass
B. potential energy
C. action-reaction
D. weight
5.4 For a force to be observed, two bodies \qquad necessarily.
A. must be in contact.
B. do not need to be contact
C. need to have equal forces
D. must have a uniform velocity.
5.5 The gravitational accelerations of the moon and the earth are \qquad .
A. The same
B. Different
C. $6.78 \mathrm{~m} / \mathrm{s}^{2}$
D. $8.91 \mathrm{~m} / \mathrm{s}^{2}$
5.6 An electron and a proton are two \qquad particles.
A. nucleons
B. positively charged
C. negatively charged
D. unlike charged
5.7 If a coin is dropped towards a magnet, the magnet pulls on the coin just as hard as the coin pulls on the magnet. Which law applies to this concept?
A. The law of gravity
B. Inertia
C. Action-Reaction
D. $F_{\text {NET }}=m a$
5.8 Protons and neutrons are found in the following except on;
A. electronic shells
B. atom
C. nucleus
D. both B and C

5.9 The SI unit for electrical current is;

A. Amps
B. Coulomb
C. Ohms
D. Volts

5.10 The flow of electrical charges in a closed circuit is known as;

A. acceleration
B. voltage
C. resistance
D. electricity

QUESTION 6:

Question type: Structured questions.
6.1 Differentiate between a vector and scalar quantity
6.2 Suppose a force of 20 N is exerted on a brick and an acceleration of $2.5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ is observed. What is the mass of the brick?
6.2 Briefly discuss how electricity is generated from nuclear energy, i.e. uranium.
6.3 A student with a mass of 48 kg stands at the top of a hill of height 0.4 km (Position A), as shown in the diagram (Figure 3) below. Note: Answer should be in SI units.

Figure 3.
What is the student's gravitational potential energy at the top of the hill?
Note: Gravitational acceleration $(\mathrm{g})=10 \mathrm{~m} \cdot \mathrm{~s}^{-2}$
6.4 Study the closed circuit below (Fig.4) with appropriate electrical components below:

Figure 4.
Determine:
(i) the resistance in parallel only.
(ii) resistance in series only.

PERIODIC TABLE OF THE ELEMENTS

1																	18
1 \mathbf{H} 1.00794	2											13	14	15	16	17	
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.941	9.01218											10.81	12.011	14.0067	15.9994	18.9984	20.179
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	\mathbf{P}	S	Cl	Ar
22.9898	24.305	3	4	5	6	7	8	9	10	11	12	26.9815	28.0855	30.9738	32.06	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Znn	Ga	Ge	As	Se	Br	$\mathbf{K r}$
39.0983	40.08	44.9559	47.88	50.9415	51.996	54.9380	55.847	58.9332	58.69	63.546	65.38	69.72	72.59	74.9216	78.96	79.904	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	$\mathbf{Z r}$	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	II	Xe
85.4678	87.62	88.9059	91.22	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.41	114.82	118.69	121.75	127.6	126.9	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hff	Ta	W	Re	Os	Ir	$\mathbf{P t}$	Au	$\mathbf{H g}$	Tl	Pb	Bi	Po	At	Rn
132.905	137.33	174.967	178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.2	208.908	(209)	(210)	(222)
87	88	103	104	105	106	107	108	109	110	111	112		114		116		118
Fr	Ra	Lr	$\mathbf{R f}$	Db	Sg	Bh	Hs	Mt	Uun (269)	Uuu (272)	Uub (269)		Uuq		Uuh		Uuo
(223)	226.025	(260)	(261)	(262)	(263)	(264)	(265)	(268)	(269)		(269)						

Lanthanides:	57 La 138.906	$\begin{array}{\|c\|} \hline 58 \\ \mathrm{Ce} \\ 140.12 \\ \hline \end{array}$	$\left.\left\lvert\, \begin{array}{c}59 \\ \operatorname{Pr} \\ 140.908\end{array}\right.\right]$	$\begin{array}{\|c\|} \hline 60 \\ \mathrm{Nd} \\ 144.24 \\ \hline \end{array}$	$\begin{array}{\|c} 61 \\ \text { Pm } \\ (145) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 62 \\ \text { Sm } \\ 150.36 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 63 \\ \text { Eur } \\ 151.96 \\ \hline \end{array}$	64 Gd 157.25	$\left[\begin{array}{c}65 \\ \mathrm{~Tb} \\ 158.925\end{array}\right.$	$\begin{gathered} 66 \\ \mathrm{Dy} \\ 162.50 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 67 \\ \mathbf{H o} \\ \hline 161.930 \\ \hline \end{array}$	$\begin{gathered} 68 \\ \mathbf{E r} \\ 167.26 \end{gathered}$	$\begin{array}{\|c\|} \hline 69 \\ \operatorname{Tm} \\ 166.934 \\ \hline \end{array}$	$\begin{gathered} 70 \\ \mathbf{Y b} \\ 173.04 \end{gathered}$
Actinides:	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	$\begin{gathered} \text { Ac } \\ 227.028 \\ \hline \end{gathered}$	$\begin{gathered} \text { Th } \\ 232.038 \end{gathered}$	$\begin{array}{\|c\|} \mathbf{P a} \\ 231.036 \\ \hline \end{array}$	$\underset{238.029}{\mathbf{U}}$	$\begin{gathered} \mathbf{N p} \\ 237.048 \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{P u} \\ (244) \\ \hline \end{gathered}$	Am (243)	$\begin{gathered} \mathbf{C m} \\ (247) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{B k} \\ (247) \end{gathered}$	$\begin{gathered} \mathbf{C f} \\ (251) \end{gathered}$	$\begin{gathered} \mathbf{E s} \\ (252) \end{gathered}$	$\underset{\substack{\operatorname{Fin} \\(257)}}{ }$	Md (258)	$\begin{gathered} \text { No } \\ (259) \\ \hline \end{gathered}$

